READL\$ - Read Long Operation

The standard 32-bit READ verb only supports a 16-bit (64Kb) offset address. Both the FREEX\$ and FREE2\$ routines allow a dynamic memory page larger than 64Kb to be allocated. The READL\$ subroutine can be used to read directly into a memory page that is larger than 64Kb.

1. Invocation

To perform a Long Read operation code

```
CALL READL$ USING fd file address page number offset address length
```

where fd is an FD of any organization, which must be open before calling READL\$; file_address is a PIC 9(9) COMP field, not a literal, that specifies the offset of the first byte in the file to be read; page_number is a PIC 9(4) COMP field that contains the number of the dynamic memory page; offset_address is a PIC 9(9) COMP field, not a literal, that contains the offset address within the memory page; and length is a PIC 9(9) COMP field, not a literal, that contains the length of the read operation.

2. STOP Codes and Exception Conditions

No STOP codes are generated by READL\$.

The following EXIT codes may be returned by READL\$:

EXIT code	\$\$COND	Description
401	1	An irrecoverable I/O error has occurred.
402	2	A file boundary violation has occurred.

3. Programming Notes

READL\$ is only available with GSM SP-41, or later; and GLOBAL.EXE V5.9, or later.

The open File Definition (FD) passed to READL\$ can be of any organization but it only makes sense to used READL\$ with either the Relative Sequential (RSAM) or Basic Direct (BDAM) Access Method. It is not recommended to mix Access Method functions (e.g. READ, READ NEXT, WRITE etc.) with READL\$ calls on the same open FD.

The *page_number* passed to READL\$ is normally the first 2 bytes of the 32-bit pointer FMPTR returned by the FREEX\$ or FREE2\$ routine. For example:

```
01 FM * FREEX$ CONTROL BLOCK

02 FMOPC PIC 9 COMP

02 FMSIZE PIC 9(6) COMP

02 FMPTR PIC PTR

02 FMNAME PIC X(8)

01 FILLER REDEFINES FMPTR

02 FMPAGE PIC 9(4) COMP

02 FMOFFS PIC 9(4) COMP

01 F2 * FREE2$ CONTROL BLOCK
```

```
02 F2OPC PIC 9 COMP
02 F2SIZE PIC 9(9) COMP
02 F2PTR PIC PTR
02 F2NAME PIC X(8)
01 FILLER REDEFINES F2PTR
02 F2PAGE PIC 9(4) COMP
02 F2OFFS PIC 9(4) COMP
```

Note that the size of the offset address, FMOFFS, in the FM block definition is a 2-byte PIC 9(4) COMP field. This is sufficiently large for FREEX\$ and FREE2\$, both of which return a 0 in this field. However, the maximum size of a memory block created by FREEX\$ is 8,388,607 (or 2,147,483,647 for FREE2\$) both of which far exceed the capacity of a PIC 9(4) COMP field. Consequently, the offset address passed to READL\$ is a PIC 9(9) COMP field.

4. Examples

[EXAMPLES REQUIRED]

5. Copy-Books

None.

6. See Also

FREEX\$ Allocate 32-bit Memory FREE2\$ Allocate 32-bit Memory