
OPEN$ - Open Spool Directory

OPEN$ - Open Spool Directory
The OPENS$ routine is available to open a GSM directory for subsequent
processing by the LIST$ and ELIST$ functions. Unlike the related OPEN$
routine, OPENS$ will not return an exception if the directory is a
spool unit.

1. Invocation
To open a spool directory for subsequent processing code:

CALL OPENS$ USING filename

where filename is the name of a closed FD.

2. STOP Codes and Exception Conditions
No STOP codes are generated by OPENS$.

The following EXIT codes may be returned by OPENS$:

EXIT code

$$COND

Description

12201

1

An irrecoverable I/O error has occurred.

12202

2

An attempt has been made to open a unit that does
not contain a volume with a Global System Manager
directory ($$RES = 6). If an exception occurs the
OPENS$ does not take effect and the file
definition remains unchanged.

3. Programming Notes
The family of routines OPEN$, OPENS$, LIST$, ELIST$ and CLOSE$ can be
used to determine the file-id and type of each file present on a
Global System Manager direct access volume. OPENS$, rather than OPEN$,
must be used if the unit is in use as a spool unit.

The OPEN$, OPENS$ LIST$, ELIST$ and CLOSE$ routines all require a
filename as their first parameter. This name identifies an FD to be
used in the directory processing operation. At a minimum you must code
the FD statement and the following ASSIGN statement:

FD filename ORGANISATION organisation
ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]

You can use any convenient organisation (e.g. UNDEFINED, RELATIVE-
SEQUENTIAL) since the one specified is immaterial as far as the
directory routine is concerned. You should specify the file-id as a
symbol, since LIST$ returns each file-id found to be present in this
field. The volume-id should be specified as a symbol if you wish to
examine it following a call of OPEN$.

The FD must be closed when it is passed to OPENS$. It will then be
opened so that it can be processed by LIST$ or CLOSE$: the type of
open is special, however, and prevents the FD from being used by any
other file processing operation such as a READ or WRITE. When you have
finished examining the directory you must close the FD using CLOSE$.
It is then returned to the normal closed state and can, should you so
wish, be processed by a conventional access method OPEN statement.

OPEN$ - Open Spool Directory

If no exception is returned the volume-id of the currently mounted
volume will have been placed in the field you have specified using the
FD. Note that this means that if the volume-id is returned and the
file subsequently opened normally, then volume-id checking will take
place unless you zeroise the volume-id field.

If you attempt an OPENS$ operation on an FD which is already open,
either due to an access method OPEN statement or to a previous
invocation of OPENS$, your program will be terminated with a stop
code.

Note that OPENS$ behaves in the same way as OPEN$ except that it will
function on a spool unit (that is it will not return exception
condition 2 ($$RES = 6)).

Directory operations are relatively slow, so whenever possible you
should use conventional access method open operations to determine
whether or not files are present. For example, to check whether a file
of known type is present it is usually best to issue an OPEN OLD or
OPEN SHARED for it.

The directory operations are best employed in applications which are
not performance critical, such as displaying or listing file
information in response to an operator enquiry, or in printing or
conversion operations where a number of files on the same volume are
subjected to lengthy processing. In both these cases the time spent
accessing the directory is short in comparison with the display or
file processing time.

Note that if a spool unit has been opened by the OPENS$ routine the
file names returned by the LIST$ routine will be as those listed by $F
(i.e. sssoooop where sss is the sequence number, oooo is the operator-
id and p is the partition number.

4. Examples
[EXAMPLE REQUIRED]

5. Copy-Books
None.

6. See Also
OPEN$ Open Directory
LIST$ List Directory
ELIST$ List Directory Extended
CLOSE$ Close Directory

