
NEWEV$ - Create New 32-bit Stacked Environment

NEWEV$ - Create New 32-bit Stacked Environment
The NEWEV$ routine is used to create a new 32-bit Stacked Environment
(Universe). This allows a program to run another program(s) in a
completely new Global System Manager Environment. This environment is
created by saving and restoring a number of System Variables around a
NEWEV$ call. Note that the new Global System Manager Environment created
by NEWEV$ is not the same as the different environment provided when
running a program in a different partition. Consequently, NEWEV$ should
be used with great care.

All effort should be made to restructure an application to use the
traditional EXEC verb to execute overlays. NEWEV$, with its inherent
problems (see below), should only be used as a last resort.

1. Invocation
To create a new 32-bit Stacked Environment (Universe) code:

$SET tb

 CALL NEWEV$ USING [par1] [par2] [par3] [par4] [par5] [par6] [par7]

where tb is a control block of the following format:

01 TB
 02 TBPROG PIC X(8) * NAME OF THE PROGRAM TO EXECUTE
 02 TBSAVE PIC 9 COMP * 1 = SAVE SCREEN IMAGE

 * 0 = DO NOT SAVE SCREEN IMAGE

and the optional par1 to par7 parameter are passed directly to the
program to be executed in TBPROG.

2. STOP Codes and Exception Conditions
The following STOP codes may be generated by NEWEV$:

STOP code

Description

12501

An attempt to exceed the maximum number of stacked
environments (10) has been attempted.

12502

Unable to allocate the 32-bit memory pages required for the
new stacked environment.

The following EXIT codes may be returned by NEWEV$:

EXIT code

$$COND

Description

nnnaaa

aa

The exception returned by the program executed in
the new stacked environment.

3. Programming Notes
The 32-bit NEWEV$ routine effectively replaces the 16-bit SBOVL$
routine which has no 32-bit equivalent.

NEWEV$ - Create New 32-bit Stacked Environment

All effort should be made to restructure an application to use the
traditional EXEC verb to execute overlays. NEWEV$, with its inherent
problems (see below), should only be used as a last resort.

The level of new environments is limited to 10. You may not have more
than 10 NEWEV$ levels, that is the call stack level for NEWEV$ calls
is 10.

Any program that is run using NEWEV$ must be a root program and not a
dependent program.

The $$AREA variable is not saved by NEWEV$. If an application needs
to save $$AREA it must do so itself from inside the calling program.

Any data pages allocated in a new environment (for instance by using
FREEX$) will be de-allocated once execution has returned from this
environment. Any shared data pages must be allocated at the root
level.

The program called by NEWEV$ must not generate any STOP CODES.
Generating a STOP CODE may damage the data being accessed by the
underlying program (i.e. the program calling NEWEV$).

The following example breaks the rules:

PROGRAM A
DATA DIVISION
01 TB

 02 TBPROG PIC X(8) * PROGRAM TO EXECUTE
 VALUE “B”
 02 TBSAVE PIC 9 COMP * = 1 SAVE SCREEN IMAGE
 VALUE 1 * 0 OTHER WISE
*
77 P1 PIC X
PROCEDURE DIVISION
 $SET TB
 CALL NEWEV$ USING P1
EXIT
ENDPROG

ENDSOURCE

PROGRAM B
DATA DIVISION
LINKAGE SECTION
77 L-P1 PIC X
PROCEDURE DIVISION
ENTRY B USING L-P1

STOP WITH 1
EXIT
ENDPROG

ENDSOURCE

Parameter Passing
Any parameters passed to the NEWEV$ overlay must not expect to return
pointers which directly address data in the execution environment as
on exit from this environment it will be de-allocated.
The following example breaks the rules:

PROGRAM A
DATA DIVISION

01 TB
 02 TBPROG PIC X(8) * PROGRAM TO EXECUTE
 VALUE “B”
 02 TBSAVE PIC 9 COMP * = 1 SAVE SCREEN IMAGE
 VALUE 1 * 0 OTHER WISE
*
77 P1 PIC PTR

NEWEV$ - Create New 32-bit Stacked Environment

PROCEDURE DIVISION
 $SET TB
 CALL NEWEV$ USING P1
EXIT
ENDPROG
ENDSOURCE

PROGRAM B
DATA DIVISION
77 DAYS OCCURS 2 PIC X(3)
 VALUE “MON”

 VALUE “TUE”
LINKAGE SECTION
77 L-P1 PIC PTR
PROCEDURE DIVISION
ENTRY USING L-P1
 POINT L-P1 AT DAYS(2)
EXIT
ENDPROG
ENDSOURCE

System variables must not be passed as parameters via NEWEV$.

The following example breaks the rules:

PROGRAM A
DATA DIVISION
01 TB
 02 TBPROG PIC X(8) * PROGRAM TO EXECUTE
 VALUE “B”
 02 TBSAVE PIC 9 COMP * = 1 SAVE SCREEN IMAGE
 VALUE 1 * 0 OTHER WISE

*
PROCEDURE DIVISION
 $SET TB
 CALL NEWEV$ USING $$DATE
EXIT
ENDPROG
ENDSOURCE

PROGRAM B
DATA DIVISION
77 Z-LONG PIC X(10)

LINKAGE SECTION

77 L-P1 PIC DATE

PROCEDURE DIVISION
ENTRY USING L-P1
 CALL DT-DL$ USING L-P1 Z-DATE
EXIT
ENDPROG
ENDSOURCE

In this example, $$DATE would need to be saved before the NEWEV$ call:

PROGRAM A
DATA DIVISION
01 TB
 02 TBPROG PIC X(8) * PROGRAM TO EXECUTE
 VALUE “B”
 02 TBSAVE PIC 9 COMP * = 1 SAVE SCREEN IMAGE
 VALUE 1 * 0 OTHER WISE
*
77 Z-D PIC 9(6) C

PROCEDURE DIVISION
 MOVE $$DATE TO Z-D
 $SET TB
 CALL NEWEV$ USING Z-D
EXIT
ENDPROG
ENDSOURCE

NEWEV$ - Create New 32-bit Stacked Environment

PROGRAM B
DATA DIVISION
77 Z-LONG PIC X(10)
LINKAGE SECTION

77 L-P1 PIC DATE

PROCEDURE DIVISION
ENTRY USING L-P1
 CALL DT-DL$ USING L-P1 Z-DATE
EXIT

ENDPROG
ENDSOURCE

Databases and Locking
In any normal application all locks must be released before a program
calls NEWEV$, and as far as possible no locking should be done in the
NEWEV$ overlay itself even though this is less serious. This is
because confusion and lockouts could occur as in the examples below.
There is no difference in outcome in locking behaviour, using NEWEV$,
between programs accessing Global Speedbase databases and those
accessing Pervasive SQL databases. It should be noted, however, that
the locking behaviour of Pervasive databases records is not under our
control and may differ between different versions of Pervasive SQL.

Example 1
A record may be locked in the program calling NEWEV$ as well as in the
NEWEV$ overlay. This will not cause locking to fail but two locks
will be issued. This is true even when the databases are in SQL
format.

For example, the following would cause a problem:

PROGRAM A
ACCESS AA
DATA DIVISION
01 TB
 02 TBPROG PIC X(8) * PROGRAM TO EXECUTE
 VALUE “B”
 02 TBSAVE PIC 9 COMP * = 1 SAVE SCREEN IMAGE

 VALUE 1 * 0 OTHER WISE
*
PROCEDURE DIVISION
 CALL B$OPN USING “DB “ “DBD” 0
 FETCH FIRST AAPRI RETRY -1
 MOVE “A” TO AAX1
 REWRITE AA
 FETCH FIRST AAPRI RETRY -1
 $SET TB
 CALL NEWEV$
 DISPLAY AAX1

 CALL B$CDB
EXIT
ENDPROG
ENDSOURCE

PROGRAM B
ACCESS AA
DATA DIVISION

PROCEDURE DIVISION

 CALL B$OPN USING “DB “ “DBD” 0
 FETCH FIRST AAPRI * THIS LOCK WILL NOT RETRY AND WILL SUCCEED

 ON NO EXCEPTION
 MOVE “B” TO AAX1
 REWRITE AA
 END
 CALL B$CLD
EXIT

NEWEV$ - Create New 32-bit Stacked Environment

ENDPROG
ENDSOURCE

Because the lock does not fail in program B, the record will be
rewritten with “B” in AAX1 when the NEWEV$ B overlay is executed.
Because the program A would expect the record to be locked, the record
data in the record area in program A will not be modified. The
display of AAX1 will therefore “A” even though the record in the
database has the value of “B” in AAX1.

This is one explanation of why all locks must be released before
entering a NEWEV$ call and why it is preferable not to issue locks in
the program run by NEWEV$.

It is important to note that in the (hopefully never) occasion that
you might ever need to leave a lock outstanding over a NEWEV$ call,
and you need to leave the locks active, then when closing databases in
the NEWEV$ overlay, B$CLD should be used and not B$CDB. B$CLD is the
same as B$CDB but it only releases locks held on the specific access
channel and does not release all locks on the database. If you do not
use the special B$CLD then when you exit the environment all locks on
the database will be lost. This includes locks issued in other
environments.

Example 2
A lock out for a very long time may occur for other user on the
record.

For example, the following would cause a problem:

PROGRAM A
ACCESS AA
DATA DIVISION
01 TB
 02 TBPROG PIC X(8) * PROGRAM TO EXECUTE
 VALUE “B”
 02 TBSAVE PIC 9 COMP * = 1 SAVE SCREEN IMAGE
 VALUE 1 * 0 OTHER WISE
*

PROCEDURE DIVISION
 CALL B$OPN USING “DB “ “DBD” 0
 FETCH FIRST AAPRI RETRY -1
 $SET TB
 CALL NEWEV$
 DISPLAY AAX1
 CALL B$CDB
EXIT
ENDPROG
ENDSOURCE

PROGRAM B
DATA DIVISION
77 Z-X1 PIC X

PROCEDURE DIVISION
 ACCEPT Z-X1
EXIT
ENDPROG
ENDSOURCE

If program B does and accept and the user leaves the screen sitting at
an accept, or the NEWEV$ overlay “B” does some processing which takes
a long time, the record locked in program A may remain locked for a
very long time without it being visually obvious. This would cause
other users to be locked out on this record for a very long time. All
locks should therefore be released before NEWEV$ is called.

NEWEV$ - Create New 32-bit Stacked Environment

4. Examples
[EXAMPLE REQUIRED]

5. Copy-Books
None.

6. See Also
ENVNO$ Return 32-bit Stacked Environment (Universe) Number

