
LIST$ - List Directory

LIST$ - List Directory
The LIST$ routine is available to obtains details of the first or next
file present in a GSM directory previously opened using the OPEN$ or
OPENS$ routine.

1. Invocation
To obtain details of the first or next file present in a directory
code:

CALL LIST$ USING filename type

where filename is the name of an FD opened using OPEN$, or OPENS$; and
type is the name of a PIC S9(2) COMP field in which a value defining
the file type, as described below, is returned when LIST$ returns
normally or with an exception 3 or 4.

2. STOP Codes and Exception Conditions
The following STOP codes may be generated by LIST$:

STOP code

Description

12202

The FD has not been opened by OPEN$ (or OPENS$).

The following EXIT codes may be returned by LIST$:

EXIT code

$$COND

Description

12201

1

An irrecoverable I/O error has occurred.

12202

2

No more files are present in the directory.

12203

3

The current file is OPEN shared.

12204

4

The current file is OPEN exclusively.

3. Programming Notes
The family of routines OPEN$, OPENS$, LIST$, ELIST$ and CLOSE$ can be
used to determine the file-id and type of each file present on a
Global System Manager direct access volume. OPENS$, rather than OPEN$,
must be used if the unit is in use as a spool unit.

The OPEN$, OPENS$ LIST$, ELIST$ and CLOSE$ routines all require a
filename as their first parameter. This name identifies an FD to be
used in the directory processing operation. At a minimum you must code
the FD statement and the following ASSIGN statement:

FD filename ORGANISATION organisation
ASSIGN TO UNIT unit-id FILE file-id [VOLUME volume-id]

You can use any convenient organisation (e.g. UNDEFINED, RELATIVE-
SEQUENTIAL) since the one specified is immaterial as far as the

LIST$ - List Directory

directory routine is concerned. You should specify the file-id as a
symbol, since LIST$ returns each file-id found to be present in this
field. The volume-id should be specified as a symbol if you wish to
examine it following a call of OPEN$.

The FD must be closed when it is passed to OPEN$. It will then be
opened so that it can be processed by LIST$ or CLOSE$: the type of
open is special, however, and prevents the FD from being used by any
other file processing operation such as a READ or WRITE. When you have
finished examining the directory you must close the FD using CLOSE$.
It is then returned to the normal closed state and can, should you so
wish, be processed by a conventional access method OPEN statement.

If no exception is returned the volume-id of the currently mounted
volume will have been placed in the field you have specified using the
FD. Note that this means that if the volume-id is returned and the
file subsequently opened normally, then volume-id checking will take
place unless you zeroise the volume-id field.

The possible values of the type field returned when the routine
signals normal completion or exception 3 or 4 are listed in the
flowing table. In this case the file-id is returned as well, in the
field named in the FILE clause of the FD's ASSIGN statement.

Type Mnemonic Description
-1 to -
99

 Backup file. If the type is -1 this is the first
file of the cycle, for -2 the second file, and so
on.

0 RS Relative sequential file
1 IS Indexed sequential file
2 PL Program file or library
3 TF Text file
4 VL Variable length record file (e.g. AutoClerk

control file).
5 DL Data library
6 DM or CL Compilation file or library (if file has C.

prefix), or DMAM database file (otherwise).
7 BP Global Planner plan file
8 WP Global Writer document file
9 DB Global Finder database
11 to 99 User-dependent organisation. Files of type 11 to

99 can be created using the basic direct access
method with the appropriate type specified in the
ORGANISATION statement used to produce the access
method.

80 ST Speedbase TAP file
81 81 Reserved for future use
82 82 Reserved for future use
83 83 Reserved for future use
84 84 Reserved for future use
85 OR Reserved for future use
86 86 Reserved for future use
87 87 Reserved for future use
88 DC $BACKUP extension file
89 D2 Temporary Speedbase Dictionary file
90 SF Speedbase full backup file
91 SI (sic) Speedbase full incremental backup file
92 SJ Speedbase part incremental backup file
93 93 Reserved for future use
94 94 Reserved for future use

LIST$ - List Directory

95 SX Extended Speedbase Unix C-ISAM database schema
file

96 SN Speedbase Btrieve database schema file
97 SU Speedbase Unix C-ISAM database schema file
98 DD Speedbase data dictionary
99 SB Speedbase database
100 SA Save file created by the $F SAV instruction
101 BO Physical bootstrap
102 BE Bootstrap file or library
103 MN Monitor, Nucleus file or library
104 IN Configuration file
105 SW Swap file
106 CW Compiler work file
107 US User file
108 SP $SPOOL schedule file
109 CF Global 2000 software integrity file
110 LG System Log file
111 SK Data skeleton
112 SY System file
113 PF Partially created file
114 LB Data file library
115 IF Integrator file
116 SC Schema file (TFSCM$)
117 SI (sic) Schema file (SCHEM$)
118 Reserved for future use
119 Reserved for future use
120 Reserved for future use
121 Reserved for future use
122 Reserved for future use
123 Reserved for future use
124 Reserved for future use
125 Reserved for future use
126 Reserved for future use
127 Reserved for future use

Exception condition 1 will be returned if an irrecoverable I/O error
occurs, and exception condition 2 when there are no more files present
in the directory. In the case of either exception the file-id and type
fields are not updated. You should follow either of these exceptions
by issuing a call on the CLOSE$ function to re-establish the FD's
initial status and release the Global System Manager resources
involved in the directory processing operation.

Each call on the LIST$ function which completes normally, or with
exception 3 or 4, returns information concerning a single file from
the directory. If the file is not in use (i.e. not already open by the
current job or a competing job in a multi-user environment) the
routine signals normal completion. Exception 3 is returned if the file
is open as shared, and exception 4 if the file is open exclusively.
The file information is supplied in the same order in which it would
appear were the directory to be listed using the file utility's LIS
instruction: file-ids do not appear in alphabetical order, nor does
the sequence of presentation necessarily reflect the time at which a
file was created or its position on the volume. Once exception
condition 2 is returned all file information has been returned to you.
If you require to scan the directory again you should follow the
CLOSE$ call with a new OPEN$ call and a new sequence of LIST$ calls.

Directory operations are relatively slow, so whenever possible you
should use conventional access method open operations to determine

LIST$ - List Directory

whether or not files are present. For example, to check whether a file
of known type is present it is usually best to issue an OPEN OLD or
OPEN SHARED for it.

The directory operations are best employed in applications which are
not performance critical, such as displaying or listing file
information in response to an operator enquiry, or in printing or
conversion operations where a number of files on the same volume are
subjected to lengthy processing. In both these cases the time spent
accessing the directory is short in comparison with the display or
file processing time.

4. Examples
[EXAMPLE REQUIRED]

5. Copy-Books
None.

6. See Also
OPEN$ Open Directory
OPENS$ Open Spool Directory
ELIST$ List Directory Extended
CLOSE$ Close Directory

