
INIT$ - Initialise Control Block

Global Development System Subroutines Manual V8.1 Page 1 of 2

INIT$ - Initialise Control Block
The INIT$ routine initialises a Control Block, setting computational and date fields to binary
zero; display numeric fields to SPACES, pointer fields to HIGH-VALUES and character fields to
a specified Initialisation Character.

1. Invocation
To initalise a control block code:

CALL INIT$ USING cb CB [ic]

where cb is the control block to be initialised; CB is a PIC X(6) field (or 6 character literal

padded with SPACESs if necessary) containing the name of the control block to be initialised;

and ic is an optional Initialisation Character.

2. STOP Codes and Exception Conditions
The following STOP codes are generated by INIT$:

STOP code

Description

12504

INIT$ was unable to locate the control block, or a symbol within the control block,
in the 32-bit Symbol Table.

12505

A zero-length Group Item has been detected in the 32-bit Symbol Table. This
should not occur - suspect program corruption.

No exception conditions are returned by INIT$.

3. Programming Notes
INIT$ commences by setting the entire control block to the optional Initialisation Character, or
SPACES if the Initiation Character is not supplied. This ensures that all character fields and
FILLER's are initialised.

The in-memory copy of the symbol table is then analysed and the following types of field are
initialised as follows:

PIC 9(x) COMP Binary zeroes
PIC 9(x,y) COMP Binary zeroes
PIC S9(x) COMP Binary zeroes
PIC S9(x,y) COMP Binary zeroes
PIC 9(x) SPACES
PIC 9(x,y) SPACES
PIC S9(x) SPACES
PIC S9(x,y) SPACES
PIC DATE Binary zeroes
PIC PTR HIGH-VALUES

INIT$ - Initialise Control Block

Global Development System Subroutines Manual V8.1 Page 2 of 2

Repeating groups, and fields within repeating groups, are initialised correctly.

INIT$ analyses the in-memory copy of the 32-bit Symbol Table to determine which offsets within
the control block are to be initialised. INIT$ can take a considerable time to complete if the
symbol table is large. If a control block is initialised repeatedly, within a program loop, you are
advised to use INIT$ outside the loop to initialise a "template" copy of the required control block;
and move the entire "template" control block to the "live" block repeatedly, inside the loop.

The results will be dramatically unpredictable if the name of the control block is different from

the control block passed to INIT$.

4. Examples
To initialise the AB control block, setting all character fields and FILLER's to SPACES, code:

 CALL INIT$ USING AB "AB "

To initialise the ABCDEF control block, setting all character fields and FILLER's to ASCII "Z",
code:

 CALL INIT$ USING ABCDEF "ABCEF" "Z"

5. Copy-Books
None.

6. See Also
B$INIR Initialise non-DBX database record
B$DXIN Initialise DBX database record

