

 Global
 Development System
 Debugger
 Notes

 June 2001

 M??V??/??

Chapter 10 - Global Development Debugger ($DBUG)

Global Development System Manual V8.1 Page 2 of 11

1. Introduction
This document describes $DBUG, a modern, visual debugging tool for 32-bit Global applications.
$DBUG is a major new component of the Global Development System.

$DBUG uses a full GUI interface, which shows the current source position of an executing program
at all times. This allows the programmer to debug the source program directly, without needing to
reference secondary listings and other files. The source program can be executed and trapped,
resumed and advanced. To solve difficult problems, execution can proceed on a line-by-line (Single-
Step) basis, giving the programmer total control of the debugging process.

Examining the contents of symbols needs only a single mouse click. Clicking on a symbol causes
the symbol's assigned value to be shown in one of 4 watch windows. Any group variable (such as
an I/O channel) is instantly dissected into its component fields. Equally, arrays are instantly
dissected into their elemental fields. $DBUG retains a complete history of all inspected symbols
within four separate watch windows, the current contents of which can be examined at all times.

Trap handling is also powerful and easy to use. Code Traps are set and un-set with a single click,

and a special search facility makes these traps easy to maintain. Conditional Code traps can now

be implemented using the new $BREAK statement, which allows the application program to halt
execution under particular conditions.

Most importantly, a new Value Trap facility now allows traps to be set on Data items as well as on

code lines. When a Value Trap is set, program execution halts when a given variable is modified, or
attains a specified value. $DBUG then instantly displays the responsible source code line, allowing
super-fast problem resolution.

$DBUG is the first Development Suite component of the NET-GSM environment. While impressive
when used locally, perhaps its most outstanding feature is the ability to debug remote applications
from ANYWHERE in the world. Supporting remote Server installations has never been easier, and
can now be approached with confidence. All you'll need is access to the internet, and $DBUG will
help you deliver the rest.

The remainder of this notice is aimed at developers of 32-bit Global applications. It summarises the
operation of $DBUG, and provides installation and compatibility information.

2. Installation
$DBUG and its overlay, $DBUG1, are distributed with GSM Service Pack-5 (GSM SP-5). Both
$DBUG and $DBUG1 are held in the P.$CMLB2 library.

3. Compatibility
$DBUG requires GSM or GSM-PM V8.1l Service Pack-5 to operate. If installed on an earlier
version of GSM, the program will suffer fatal Loader Relocation Warnings when executed.

$DBUG must be running under Global Application Explorer (GX) V2.4, or later. While $DBUG itself
will only operate on GX it can be used to debug a 32-bit program, on another user, that is not
running under GX.

$DBUG only operates with 32-bit Global applications developed using $SDL32 compiler version
V2.40, or later. $DBUG will not recognise the option SD source option for programs compiled with

Chapter 10 - Global Development Debugger ($DBUG)

Global Development System Manual V8.1 Page 3 of 11

earlier versions of the compiler. Before running the debugger, we therefore recommend you ensure
that all applications have been recompiled. $SDL32 V2.40 is included in the Global Development
System service pack 5 (GDS-SP5).

4. Running the Debugger
A Debug session runs in 2 Partitions. The debugger runs in one partition, which is known as the
$DBUG partition. The Task that is being debugged runs in the other partition - the Target Partition.

The 2 partitions do not need to belong to the same user, but must both execute on the same Global
client (i.e. the same instance of GLOBAL.EXE). The $DBUG partition MUST run under the control
of Global Explorer, but the target partition can be connected to any supported display device,
including serial screens, GUI-1, serial screen emulators or GX. The only requirement is that the
target partition must be running a 32-bit program, developed using $SDL32. $DBUG cannot be
used to debug programs developed using $SDL or $COBOL.

4.1 Starting the Debugger
$DBUG is invoked by keying $DBUG at the menu. This causes the $DBUG pre-amble window to
be displayed:

You start the debug process by keying in the operator-id and partition number of the target partition
(i.e. the partition that is (or will) run the program you want to debug). Clicking OK causes $DBUG to
halt execution of the target partition, which then displays the source code of the interrupted program
at the current program position.

When a Program Break takes place, $DBUG always displays the source code at the Lowest (i.e.
deepest) position within the call stack for which source debugging is available. If source debugging
is not enabled at the lowest level, it simply displays the current source position at the preceding level
in the Call-Stack (and so forth).

Chapter 10 - Global Development Debugger ($DBUG)

Global Development System Manual V8.1 Page 4 of 11

If none of the programs in the call stack have option SD source available, then $DBUG will not be
able to display any source information. This may happen, for example, if you break into the
operation of the menu handler. In this event, you should set an Overlay Trap using the DIAGS
button, and resume the partition. This will cause a Break to take place when that program begins
execution.

In all other circumstances $DBUG will now display the source program showing the current program
position in the Source Program Window. All further debugging operations are then controlled using
this window.

4.2 The Source Program Window
This window is the heart of the debugger. From here you control the operation of the target partition,
set traps, resume and step the program, inspect variables and so forth.

The Window heading provides you with the Name and Title of the program you are currently
debugging. The source code of that program is shown in the main body of the window. When a
Break or Program Exception is triggered, the source is shown at the current source position within
the Call Stack, with the current line highlighted.

The Main Source Window has three banks of buttons on the left hand side. These buttons allow
you to view various tables, such as the Call-Stack and the Page-Table, and allow you to control
execution of the target partition.

To the right-hand side of these buttons there are 4 Watch Symbol slots within the Watch Sub-
Window, in which you can view a selection of symbols from the current Watch Window. You select
the Watch Window you want to view by clicking a Watch Window Buttons, which are numbered "1"
"2" "3" and "4". It is convenient to use each of these for a different purpose, for example you can
use Watch 1 for general symbol inspection, Watch 2 for Value Traps, Watch 3 for a particular IO

Chapter 10 - Global Development Debugger ($DBUG)

Global Development System Manual V8.1 Page 5 of 11

channel, and so forth.

The quickest way to view a symbol is to click on its symbol name within the displayed source.
$DBUG then displays both the symbol's name and value in the next available watch-window slot,
which it scrolls if necessary. You can also click on any Hex address field within the source, which
causes a 'manual' symbol to be created at the clicked offset. This allows you to get a quick hex view
of the contents of any symbol or address within a program page.

Whenever you add a symbol, it is added to end of the list of symbols for that Watch Window.
Clicking on any Symbol name in the Watch Sub-Window, causes the full Watch Window to be
displayed, which allows you to amend, delete or add symbols to that Watch Window. Amongst
many other functions, the full Watch Window allows you choose which 4 symbols you want to
display in the Main Source window. The full Watch Window is fully described in section 6.

The size of the Watch Sub-Window is necessarily restricted. To get more details of a displayed
symbol, you can click on the Symbol's Value field. If the field is an indexed field, this causes each of
the array elements to be displayed in a subsidiary window. If the field is a Group Field, clicking on
it's value causes the field to be exploded into its elementary items, which are again displayed in a
subsidiary window. If the field is a Entry-point, Section, or Label, then clicking on it causes $DBUG
to display the source code of that entry, which allows for a very quick view of a called routine.

All other $DBUG operations are controlled by one of the following buttons:

 Stack Displays the Call Stack Window
 Mark Allows you Mark the Source code for later Redisplay
 Search Allows you to search the source for text strings
 Trap Sets and Clears Code Traps

 Page-Table Displays the Page Table Window
 Properties Displays the Source Properties Window
 Diags Displays the Diagnostics Window
 Back Allows you to back-track through the source

 Step Allows you to execute the current source line
 Advance Allows you to Advance to the next source line
 Resume Resumes the execution of the program
 Break Allows you to halt execution at any time

The Stack button is used to display the Call-Stack Window. When clicked, the Call-Stack window is

displayed, showing the current source position in terms of the call hierarchy. The < and > Buttons

allow you to travel up and down the Call stack, displaying the current source position at each level.
Important note: Any calls on programs not compiled with option SD are ignored by these buttons.

The Mark button is used to Mark a text line to make it easy to return to later. When marked, the

source code line is displayed with a "!". You can then use the < and > buttons to reposition on the

marked source code at any time. This facility works with multiple source programs, so you can use
to flip from program to program.

The Search button is used to perform text searches within the current page. When clicked, it

causes a Search Window to be displayed, which allows you to specify a search string. You can
specify whether the search should be case sensitive, and whether the search needs to take place

Chapter 10 - Global Development Debugger ($DBUG)

Global Development System Manual V8.1 Page 6 of 11

from the current position. The < and > buttons allow you to repeat the current search from the

current source position going either backwards or forwards from that point.

The Trap button allows you to set or clear a trap on the current source code line, which must

contain procedure code (and thus have an address). The < and > buttons allow you to show the

source for the preceding or next trap within the current program.

The Page-Table button causes the Page Table Window to be displayed. This table lists all of the

32-bit pages currently loaded within the target partition, and shows the total memory used by the
application. All programs that support Source Debugging are shown within the Page table with a
check, and you can view the source of these by clicking on the appropriate page.

The Properties button causes the Program Properties window to be displayed. This window lists all

of the source components (including all copy libraries and Dictionaries) that were used to compile
the displayed source program. The window also displays the source file name and line number of
the currently displayed source position.

The Diags button causes the Diagnostics Window to be displayed. This displays the current

program status, with last file access information. This window can also be used to Set or Clear the
Overlay Trap field. This trap allows you to cause a break whenever any instruction within the
entered program name is executed. Note that this trap stays set until you reset it, so before
resuming an Overlay Trapped program, you must first use this function to clear the trap.

The Back button is used to go back to the last viewed source positions. It simply takes you back to

the last (or prior) position that was displayed. When single stepping through a program, for example,
this button allows you to retrace your steps. Note that it does NOT cause the program to be
executed in reverse direction, and the values of inspected variables are therefore not affected.

The remaining 4 buttons are used to control the execution of the target program. Note that
execution of a program is permitted only up to the point when a very serious condition (such as a
stop code) is detected. After that, any attempt to resume the program will have no effect.

The Step button is used to execute the target program in line-by-line mode. When the next

instruction is a Call or Perform, the operation will show the next source line executed, even if that
source code line is in a different program page. Thus if you use STEP to execute a CALL
statement, the next source line seen will be the entrypoint of the called routine. Note that the step
operation will return control only in program pages that have been compiled using option SD.

The Advance button is also used to execute the program in single-step mode. You use it when you

are not interested in stepping through code at a lower call level. Thus if you use Advance to execute
a CALL statement, the next source line seen will be the next physical line in the same program.

The Resume button is used to resume execution of the target partition. Execution of the program

will then continue until the program hits a Procedure or Value Traps, suffers a hard exception, or
until you use the Break Button to temporarily halt execution.

The Break button is used to halt execution of the target partition. If the target program is already

halted, then the button has no effect. The button is used to break into an executing process. When
clicked on, $DBUG displays the current source line of the lowest possible call level that supports
Source Debugging.

Chapter 10 - Global Development Debugger ($DBUG)

Global Development System Manual V8.1 Page 7 of 11

4.3 The Call Stack Window
This window lists the call path details from the current Call-Stack, giving the name and title of the
program at each call level, showing the Current Address as well as the originally called Address.
The Program version, Compiler Version, Program Type, and Compilation Date and time are also
displayed in this window.

Each Program in the call path may be displayed with a Check next to the Program type. When
Checked, this indicates that the program supports source debugging (i.e. it was compiled with
compiler option SD by $SDL version 2.40, or later, AND the program has not subsequently had its

Source Debug information removed using the $LIB NSD option).

Selecting a Checked Call level in this window causes the Source Window to be entered at the
Current Position at the selected Call Level, and allows you to debug the program at that level of
control. A subsequent Step or Advance operation will then bypass the display of any source code
for any lower levels within the Call-Stack.

4.4 The Page-Table Window
This window displays details of all Program and Data pages currently used by the Target Partition,
giving the Page-Name, Title and Type of each page. When the page is a program page, the window
also shows the Program version, Compiler Version, Program Type, and Compilation Date and time.

Chapter 10 - Global Development Debugger ($DBUG)

Global Development System Manual V8.1 Page 8 of 11

Program pages may be displayed with a Check next to the Program type. When Checked, this
indicates that the program supports source debugging. Selecting a Checked Program in this window
causes the selected source to be displayed in the Source Window, allowing you to debug that
source.

4.5 The Watch Window
This window displays full details of all symbols contained within the currently selected Watch
window. There are 4 watch windows symbol sets, corresponding to the buttons marked "1" through
"4" on the Source Program Window. You select the symbol set you want by clicking on one of these
buttons, which causes the first 4 symbols from that watch window to be displayed in the Source
window. To enter Watch Window for that symbol set, you then click on any of the Symbol Names
fields. The following window is then displayed:

Chapter 10 - Global Development Debugger ($DBUG)

Global Development System Manual V8.1 Page 9 of 11

The Window displays full details for each symbol currently contained within the selected watch
symbol set, giving details of the symbol with it's currently assigned contents (the Symbol's Value).
The window allows you to alter, add, and delete symbols. It allows you to define which of the
symbols are to be displayed in the Source Window, and allows you to set Data Value Traps. The
window can be used to modify the symbol definition, and can alter the assigned contents of a given
symbol.

The following information is displayed for each symbol:

Pagename This is the name of the Program Page in which the symbol is either declared

or referenced. Note that a symbol is declared in only one page, but when
Global, may be referenced in many pages. While it is usual to specify the
Declared Page for a symbol, $DBUG is able to resolve symbols equally well
when a referencing page is specified.

Symbol-name This is the name of the symbol you wish to inspect. You may alternatively

enter a Hex address in the form #hhhh to reference a specific memory
location.

(Idx) When the symbol is indexed (i.e. it forms part of an array), you may enter a

Subscript value here to specify which element you want to inspect.

Contents This shows the current contents of the symbol. The Symbols assigned value

is displayed in its expanded display form, or in Hex format. When "$Memory
Violation" is displayed in this field, then the current address is invalid, usually
because the target page is not currently loaded, or (if the symbol is based)
because the base pointer does not point to a valid address.

Chapter 10 - Global Development Debugger ($DBUG)

Global Development System Manual V8.1 Page 10 of 11

DSP This is the Display Check-Box, which allows you to specify if the symbols is
to be displayed within the Source Window. The Source Window can display
up to 4 symbols simultaneously, and can therefore check up to 4 symbols
within the list.

Picture This shows the symbol's Picture Clause in standard format. You can

modify the picture clause by clicking on this field. If you do this, you should
note that the picture clause will be changed ONLY for Display purposes, the
execution of the Program will be unaffected.

Occurs This field allows you to specify or alter the number of occurrences of an array

element.

Rep-Len This field allows you to specify or alter the repeat length of an occurring item,

which is useful when a subscripted item is an elementary field within an
occurring group. You will generally only need to alter this field when you
create manual symbols that are indexed.

Address This shows the dereferenced address of the symbol, as affected by any

subscript and Repeat-length you may have entered. The address is shown in
the Page/Offset form, and specifies the memory in which the Symbol's value
assignment is stored.

Clicking on this field causes $DBUG to display the relevant source program
at the indicated address. You will want to use this feature, its an extremely
quick way of moving between the programs procedure and it's related Data
Declarations.

Hex? This Check-box allows you to specify that the field's contents are to be

displayed in Hex as opposed to display format.

The next three fields are used to set a Data Value trap on the displayed symbol.

Vtrap-Set? Is a Check-Box which you must check in order to supply any other Value-

Trap details. You may disable an existing Value-Trap by unchecking this box
at any time.

Vtrap-Condn This field allows you to specify the Condition under which a Value Trap is to

take place. It may contain any of the following relational conditions:

 "<", "<=", "=", "=>", ">", and "<>" or "CH"

Setting Value Traps is described later in this section.

Vtrap-Value This field allows you to specify the Reference Value used to trap the field. It

is entered only if the condition is relational. When the field is trapped on
change ("CH") it is not required.

4.5.1 Setting Value-Traps

There are 2 Value-Trap Types: Modification Data Traps and Relational Data Traps. Both trap

types cause execution of the target program to break when a Symbols contents change in a certain

Chapter 10 - Global Development Debugger ($DBUG)

Global Development System Manual V8.1 Page 11 of 11

way.

In a Modification Data Trap, you tell $DBUG to Break execution of the target program whenever

the specified symbol is changed. You specify this trap by Checking the Vtrap-Set? Check-box, and
entering "CH" for the Condition. For a modification trap, you do not need to enter a Reference value.

From this point on, execution will Break whenever the Symbol's Contents change. If the symbol is
displayed in the Main Source Window (i.e. the DSP check-box is checked), then the field's data
value is shown highlighted. Otherwise, the symbol will be displayed in the appropriate Watch
Window.

In a Relational Data Trap, you ask $DBUG to Break execution of the program when a symbols

attains a reference value you have entered into the Vtrap-Value field. Thus entering:

 "=>" "TR05"

Will cause the interpreter to break execution of the program when the symbol's value is equal or
greater than the value "TR05".

You should note that the trap remains set until you unset it. To resume the program following a
relational Value-Trap you should therefore disable the trap first. To make this easy to do, $DBUG
always displays the Watch Window highlighting the Value-Trapped Symbol when a relational Value
Trap is triggered. To allow the program to be continued, you should either now turn the trap off, or
change the trap condition or value so that it will not trap out on when the next instruction is
executed.

