ALERT$ - Setting Application Alerts

ALERT$ - Setting Application Alerts

The ALERT$ routine is used to issue an Application Alert in OneOffice 3000 WorkSpace (OO3KWS). An Application Alert can be used to alert users to a particular issue (e.g. a credit limit has been reached).

1.
Invocation

To establish an Application Alert code:

CALL ALERT$ USING alert text al [dt]
where alert is a PIC X(8) variable or literal containing the alert name, text is a LOW-VALUES terminated text block to be displayed on issuing the alert, al the alert control block of the following format:

01
AL

 02
ALVERS
PIC 9(4) COMP
* Block version number

* MUST BE 1

 02
ALPROG
PIC X(8) * Alert action program

 02 ALREF

PIC X(20)

* Alert reference

 02
ALPTR OCCURS n PIC PTR * Pointers to embedded values.

and dl is an optional 512-byte free format data area.

To only ensure the merge the application alert file with the central alert database code

CALL ALERT$
2.
STOP Codes and Exception Conditions

The following STOP codes may be generated by PCODE$:

	STOP code
	Description

	12902
	Invalid block version number.

	12903

	Text length exceeds 1024 bytes

	 12904
	Invalid embedded definition in text.

	12905

	Invalid alert value passed.

	12906
	Invalid alert value pointer passed to the routine. (The value pointer table may contain too few entries.

	12907

	There are more than 12 value markers in the text.

No exit codes are returned by ALERT$.

3. Programming Notes

If ALERT$ is not being run on OO3KWS, or if the $ALRT alert database is not available, it will simply exit.

The text block contains the text to be displayed when an alert is activated. It must be terminated with #00 and must not exceed 1024 characters. The alert text may have embedded in it a maximum of 12 of value markers indicating the position and type of the alert values to be substituted into the text. The pointers to the values to be substituted must be allocated in order in the al control block.

The following markers must be used to indicate embedded alert values:

 ~snnn
 string of length nnn (max 127);

 ~n

 computational field of format S9(12,6) COMP (no other format of

 computational field is allowed);

 ~d

 PIC DATE date.

The alert values will be passed to any alert filter program, executed when an alert is issued, that has been allocated to the alert using the $ALERT utility. It is therefore important that the alert values for a given alert are fully documented so that customised filter programs can be created.

The alert reference must be set and is used to distinguish between different occurrences of the same alert and will prevent individual references from being issued more than once. For example, when “COMPANY1” has reached a credit limit you may send an alert of “CREDIT” with reference “COMPANY1”. If the same piece of code is executed again and the same alert and reference is sent, then $ALERT will not create another alert but simply overwrite the existing one. If COMPANY2 then reaches its credit limit, an alert of “CREDIT” with “COMPANY2” in the reference field can be sent. In this case ALERT$ will create a new alert.

The optional alert action program will be run by OO3KWS in a free tab when an alert is issued. This program can be used to allow the alerted user to take appropriate action immediately. Before running the alert program, OO3KWS will set the environment to that of the program issuing the alert (i.e. unit assignments, program library etc). The alert program must therefore be present on the same unit as the issuing program. In addition to setting up the environment for the alert program, OO3KWS will also copy the optional free format data area dt into $$ALDT. This free format area can be used as a means of communication between the issuing program and the alert program.

ALERT$, will also merge the list of application alerts in the $$ALERT file on unit $P into the alert database $ALRT on $M. (The $$ALERT file contains a list of the application alerts and must be created by the application programmer using $ALMNT.) When ALERT$ needs to merge an alert list, it will warn the user, and ask if the merge should continue. The merge will only take place if the module/version has already been entered in the $ALRT database by the system supervisor using the $ALERT utility. If that has not occurred a warning message will be issued.

If ALERT$ is called with no parameters it only executes the merge function as required. It is recommended that this call is issued on entering the application.

Messages will be displayed for any file errors that may occur.

Note that if an alert does not appear in the $ALRT database it will be ignored.

4.
Examples

[no examples available]

5.
Copy-Books

None.

6.
See Also

$ALERT
Alert management

$ALMNT
Maintain $$ALERT file

Global Development System Subroutines Manual V8.1
 Page 3 of 3

