
ROUTINES Section

Global Language Manual Page 1 of 6

The ROUTINES SECTION

The optional Routines Section is coded immediately following the window body. It is introduced by the

header:

ROUTINES SECTION

The routines section consists of a number of routines which are called during the various stages of

window processing. Each routine is identified by a special label which determines when during the

processing cycle it will be executed by the window manager.

Each routine may contain any valid procedural instruction including window management statements

such as ENTER and DISPLAY, and on completion of processing must return control to the window

manager by executing an EXIT instruction. It is therefore permissible to enter or display other windows

from within the Routines Section, providing these are not currently executing.

1. The Routines
The entry-points provided by the routines section are divided into three types, entries called during field

level processing, and entries called during record level processing, and entries called at window level

processing as below:

Routine

Description

Function

Level

B-name Before field Suppress optional fields Field

V-name Validate field Perform extra validation Field

D-name Default routine Default field contents Field

R-FETCH Record fetch Reject retrieved records Record

R-SELECT Record select Suppress selection Record

R-DELETE Record delete Suppress deletion Record

R-WRITE Record write Suppress record write Record

R-REWRITE Record rewrite Suppress rewrite Record

R-PROCESS Record process Extended processing Record

R-TERM Record terminate Release locks Record

R-START Record start Mode change processing Window

R-FUNC Function Intercept Function/button processing Window

R-INIT Window entry Entry processing Window

Routines Section Entry-Points

Most of the above routines may return an exception to the window manager using the EXIT statement.

EXIT WITH 1 has a general "incorrect - do not proceed" meaning. Other exit conditions are also used,

and these are further explained below.

2. The Before Routine (B-name)
The Before Routine is called immediately before the field is accepted or displayed. Returning control

with exit condition 1 (i.e. performing EXIT WITH 1) causes the field to be suppressed. When

suppressed, the area on the screen normally occupied by the field is cleared, and no further processing

takes place for it. If the field has the OPT option coded the field will not appear. The before routines

ROUTINES Section

Global Language Manual Page 2 of 6

are always called before the field is displayed in the window. Note that Before routines are not called in

ENQ mode processing. Returning control with exit condition 2 causes the field accept operation to be

suppressed as if the PRO option were coded.

3. The Default Routine (D-name)
The Default Routine is called before a field is processed and allows a default to be provided. Note that

the routine is only called during ADD and INS modes, since fields are regarded as pre-initialised during

MNT mode. The default is simply MOVEd into the field and the operator may accept or change it.

Before moving a default value into the field, the default routine should check that the field has not

already been initialised. Uninitialised fields will be set to spaces if character fields and zero for

computational and display numeric fields. It is also important to note that this routine is not called in

Maintenance mode.

4. The Validation Routine (V-name)
The Validation Routine is called immediately after a field has been accepted, and may be used to

perform additional validation such as range checks and can also be used to produced field level error

messages. Returning exception 1 indicates that the field is invalid, and causes it to be re-input. Note that

the validation routine is called even if it is not possible to ACCEPT the field (e.g. a protected field).

5. The Fetch Routine (R-FETCH)
The Fetch Routine is called whenever the window manager fetches a record from the database. The

routine may be used to create derived fields before the record is displayed. Where special display formats

are required, the routine may also be used to convert fields from database to external formats. It is called

immediately after retrieval of the target record, but before any other processing has taken place.

5.1 Suppressing Record Retrieval
The R-FETCH routine can also be used to suppress the retrieval of certain records, such as suppressing

inactive customers. This is achieved by returning exit condition 1, and causes the window manager to

proceed as if the record did not exist. This allows a selection of records to be displayed during enquiry

operations.

5.2 Range Checking
It is preferable to use the DEPENDENT on clause in the WINDOW statement to restrict the range of

records shown in a window. However there may be some occasion where this facility is not sufficient.

The R-FETCH routine may also be used to perform extended range checking Of greater flexibility then

that available in the DEPENDENT clause in the WINDOW statement.

To process a given range of keys, the R-FETCH routine tests whether the supplied record (i.e. the record

currently in the I/O channel) is within the required range. If in range, all is well and no further action is

required. If not, the program repositions the I/O channel at the first record or last record within the

permitted range.

Where the current key value precedes the required range, the program reads the first record in the

required range, and returns Exception 100. This indicates to Window Manager that the key value has

been ADVANCED (in terms of ASCII Index Value) to a further point in the index.

Where the key value exceeds the required range, the program reads the last record in the required range

and this time returns Exception 101. This indicates to Window Manager that the ASCII key value has

ROUTINES Section

Global Language Manual Page 3 of 6

been SET BACK to a prior position in the index.

When there are no records stored on the database within the required range, the program returns

Exception 102 in the R-FETCH routine.

The following example demonstrates the coding technique. Using the DEMO database TR record,

we want a Window which displays TR records in the range TR04 and TR08.

R-FETCH.
*
 IF TRTRNO < "TR04" * BEFORE START OF RANGE
 FETCH FIRST TRTRN KEY "TR04" * RETURN RECORD > = TR04 OR EOF
 IGNORE EXCEPTION * SOF CONDITION CAUGHT BY NEXT LINE
 IF TRTRNO > "TR08" EXIT WITH 102 * NO RECORDS IN RANGE
 EXIT WITH 100 * KEY VALUE ADVANCED EXCEPTION
 END
*
 IF TRTRNO > "TR08" * AFTER END OF RANGE
 FETCH LAST TRTRN KEY "TR08" * GET THE LAST IN RANGE OR SOF

 IGNORE EXCEPTION * SOF CONDITION CAUGHT BY NEXT LINE
 IF TRTRNO < "TR04" EXIT WITH 102 * NO RECORDS IN RANGE
 EXIT WITH 101 * KEY VALUE RETARDED EXCEPTION
 END
 EXIT

This technique is can only be used when the enquiry index is in the same order as the range you want to

select. If it is not, the required value range is spread all over the index, meaning that there will be no start

or end point you can position on.

A window written using this technique must therefore be restricted to allow enquiry only using the

relevant index(es). In the above example, it is necessary to restrict the window to the TRTRN index

only, or alternatively to disable the selection code when that index is not the currently selected enquiry

index.

6. The Select Routine (R-SELECT)
The Select Routine is called when the operator attempts to select a record, usually to enter MNT mode.

The record will already have been fetched and is displayed. The routine may be used to stop the operator

from selecting the record, and this is achieved by returning exit condition 1. For example, this might be

useful to stop the operator from attempting to amend an invoiced order.

7. The Delete Routine (R-DELETE)
The Delete Routine is called after the operator has keyed to delete the current record, but before

the deletion is performed by the window manager. The routine may reject the deletion request by

returning exception condition 1. For example, this may be required to stop the deletion of an invoice

before it has appeared on a statement.

The routine may also be used to remove unwanted servant records. For example, when the operator

requests the deletion of an order header, the routine might automatically delete all servant order lines

thus allowing the deletion to succeed.

8. The Write Routine (R-WRITE)
The Write Routine is called immediately before a new record is written to the database during ADD or

INS mode. The routine may be used to complete fields on the record, before it is actually written (e.g.

calculate the extended value of a line item). Returning exit condition 1 returns the operator to the last

ROUTINES Section

Global Language Manual Page 4 of 6

input field on the record, and suppresses the write operation. A specialise EXIT WITH 5 is also

available. This exception causes the actual write operation to be ignored carrying on to the next record.

The must be used with care and only in windows where the fields in the record can never actually be

entered, although other fields may be available.

9. The Rewrite Routine (R-REWRITE)
The Rewrite Routine is called immediately before an existing record is re-written to the database during

MNT mode. Returning exit condition 1 returns the operator to the last input field on the record, and

suppresses the rewrite operation. This routine is otherwise identical to the write routine A specialise

EXIT WITH 5 is also available. This exception causes the actual rewrite operation to be ignored

carrying on to the next record. The must be used with care and only in windows where the fields in the

record can never actually be updated i although other fields may be available.

10. The Process Routine (R-PROCESS)
The Process Routine is called after processing has been completed (i.e. on completion of ADD, INS,

EDT, MNT or DEL modes). It may be used to perform additional updates, such as writing details of the

transaction to an audit log. The system variable $MODE may be examined by the process routine to

determine in which mode the record was processed if this is important (See $MODE).

When the routine is called, the record that has just been processed by the window manager is still

contained within the I/O channel. The fields of the record may therefore be examined by the routine. It is

important to note, however, that the I/O operation (i.e. write, rewrite or delete) will already have taken

place. In the case of deletion, this means that the record no longer exists on the database at the time that

the process routine is called.

Following ADD, INS, and MNT modes, the current record in the I/O channel will normally be locked, to

ensure that it is not modified or deleted while the process routine executes. For ADD, INS and MNT

modes, the record will be locked exclusively. For SEL mode the record will be protected (locked non-

exclusively) unless the LOCK or NOLOCK options are in force.

Returning Exit condition 1 (i.e. performing an EXIT WITH 1) from the process routine returns

unsuccessful completion of the window, and causes the back-action to be taken as defined by the

window's optional Sequence statement. It should be noted that this has no effect on the processing of the

last transaction, which will already have been written to the database.

Returning Exit condition 2 causes window processing to be terminated just as if the operator had keyed a

series of <BCK> keys to terminate the current series of windows as defined by the window's sequence

statement. Where no sequence statement has been coded, the effect of this is identical to returning

exception condition 1.

11. The Terminate Routine (R-TERM)
The Terminate Routine is called when the operator terminates record processing in MNT, EDT, ADD or

INS modes by keying a function such as <BCK>, <HME>, <CLR>. It may be used, for example, to

release locks established by earlier, now aborted, record processing, such as may have occurred within

the window's validation routine. System variable $FUNC may be examined to determine the function

used to terminate record processing. Note that the variable $MODE is not defined when the R-TERM

routine is processed. Note that the R-TERM routine must not be used to unlock any window target

record type.

ROUTINES Section

Global Language Manual Page 5 of 6

12. The Start Routine (R-START)
The R-START entry is called whenever Window Manager begins processing for a given operating mode

($MODE). The entry-point has been provided to allow you to Enable or Disable buttons appropriate for the

current Mode using the ENABLE and DISABLE statements (see ENABLE/DISABLE documentation). Your

code should simply test $MODE, and then enable the buttons you want enabled, and disable the buttons that

are invalid for the mode. In general, you should code all of your non-Temporary ENABLE and DISABLE

statements in this routine.

The Entry-point is called immediately before the first accept operation takes place as processing begins in all

modes. For symmetry and completeness, the R-START entry-point is called in Delete mode even though no

accept operation normally takes following on a record deletion request.

 Note that unlike the R-FETCH routine, the entry-point is NOT called each time a record is read. You cannot

therefore use this entry-point to set field Display Attributes, except for the record that is currently being

processed.

 You can use the R-START Routine even when using a mixture of both System and Application Button

functions. Immediately before calling the R-START routine, Window Manager will already have enabled the

appropriate System Function buttons, and will have set the Default System Button according to its rules. You

can then use the ENABLE .. DEFAULT statement to over-ride the standard Window Manager default button,

which then remains in force until R-START is next called.

13. The Function Routine (R-FUNC)
The Function Routine is called by Window Manager whenever any System or Application Function is

requested. The R-FUNC Routines Section Entry-point allows ALL functions to be intercepted and processed

by the Application Program. It is used to process Application Buttons, and to augment or over-ride the

processing of standard System Functions.

The routine is called irrespective of the source of the request and returns all functions generated by all Key-

stroke, Button-click, Toolbar, TYP$ and Mouse operations.

The requested function number is returned in System Variable $FUNC. Thus when the button coded as BTN

U78 is clicked, $FUNC will contain the value 78, or following a <PGE> keystroke, the value 5. Window

Manager supplies the Symbol name of the Variable being accepted when the function was requested in

Variable $VARNAME. Thus if the button was clicked while on field TRNAME, system variable

$VARNAME will contain the value "TRNAME".

This can be extremely useful when the action to be taken depends on the field being processed. For example,

you may want to define a "Search" button, but what is searched may depend on the field being processed.

Note that when the R-FUNC routine is called in DSP mode, no particular field is in the process of being

accepted, and $VARNAME is therefore null.

Having identified the requested function, the R-FUNC routine may immediately perform the requested

action, which might involve invoking another window or some other process. Alternatively the routine may

make use of the TYP$ interface to cause window manager to take some action, such as deleting a series of

records, or forcing an exit from the window.

A EXIT WITH 1 condition returned by the R-FUNC routine will cause Window Manager to ignore the

function, and resume processing at the current field. This allows you to suppress an inappropriate function at

ROUTINES Section

Global Language Manual Page 6 of 6

any time. An EXIT condition > 1 causes the Window to be terminated immediately, with the Exit code

passed back to the calling ENTER WINDOW statement.

It should be noted that the processing to be performed for an Application Button is entirely in the hands of the

application programmer. Window Manager simply passes the event to the R-FUNC routine, after which it

simply resumes the last accept operation.

14. The Initial Routine (R-INIT)
This routine is called whenever the window is entered or displayed and can be used to make window

level adjustments to the window. In particular, making adjustments to a button top for a window may be

better done in this routine, which is only called on display or entry rather than in the R-START routine

which is called more often. This making the processing of the window more efficient.

15. See Also
WINDOW Statement

WINDOW Options

WINDOW BODY

ROUTINES SECTION

